Friday, November 10, 2017

algebra for division

Our first examples of division of algebraic expressions involve simplifying and canceling.

Example 1

Simplify \displaystyle\frac{{{3}{a}{b}{\left({4}{a}^{2}{b}^{5}\right)}}}{{{8}{a}^{2}{b}^{3}}}
First, we multiply out the top line:
\displaystyle\frac{{{12}{a}^{3}{b}^{6}}}{{{8}{a}^{2}{b}^{3}}}
When we write it out in full, this means
\displaystyle\frac{{{12}\times{a}{a}{a}\times{b}{b}{b}{b}{b}{b}}}{{{8}\times{a}{a}\times{b}{b}{b}}}
Next, cancel the numbers top and bottom (we divide top and bottom by \displaystyle{4}), the "a" terms (we cancel \displaystyle{a}^{2}={a}{a} from top and bottom) and the "b" terms (we cancel \displaystyle{b}^{3}={b}{b}{b} from top and bottom) to give us the final answer:
\displaystyle\frac{{{3}{a}{b}^{3}}}{{2}}

Example 2

Simplify \displaystyle\frac{{{12}{m}^{2}{n}^{3}}}{{{\left({6}{m}^{4}{n}^{5}\right)}^{2}}}
We square the denominator (bottom) of the fraction:
\displaystyle\frac{{{12}{m}^{2}{n}^{3}}}{{{\left({6}{m}^{4}{n}^{5}\right)}^{2}}}=\frac{{{12}{m}^{2}{n}^{3}}}{{{36}{m}^{8}{n}^{10}}}
Next, we cancel out the numbers, and the "m" and "n" terms to give the final answer:
\displaystyle\frac{1}{{{3}{m}^{6}{n}^{7}}}
Easy to understand math videos:
MathTutorDVD.com

Example 3

Simplify \displaystyle\frac{{{6}{p}^{3}{q}^{2}-{10}{p}^{2}{q}}}{{{4}{q}}}
With this example, we'll break it into 2 fractions, both with denominator 4q to make it easier to see what to do.
\displaystyle\frac{{{6}{p}^{3}{q}^{2}-{10}{p}^{2}{q}}}{{{4}{q}}}=\frac{{{6}{p}^{3}{q}^{2}}}{{{4}{q}}}-\frac{{{10}{p}^{2}{q}}}{{{4}{q}}}
Next, we cancel the numbers and variables:
\displaystyle\frac{{{3}{p}^{3}{q}}}{{2}}-\frac{{{5}{p}^{2}}}{{2}}
Finally, we combine the fractions:
\displaystyle\frac{{{3}{p}^{3}{q}-{5}{p}^{2}}}{{2}}
After you have had some practice with these, you'll be able to do it without separating them into 2 fractions first.

Continues below 

Dividing by a Fraction

Recall the following when dividing algebraic expressions.
The reciprocal of a number x, is \displaystyle\frac{1}{{x}}.
For example, the reciprocal of 5 is \displaystyle\frac{1}{{5}} and the reciprocal of \displaystyle{1}\frac{2}{{3}} is \displaystyle\frac{3}{{5}}.
To divide by a fraction, you multiply by the reciprocal of the fraction.
For example, \displaystyle\frac{3}{{4}}\div\frac{7}{{x}}=\frac{3}{{4}}\times\frac{x}{{7}}=\frac{{{3}{x}}}{{28}}

Example 4

Simplify
\displaystyle\frac{{{3}+\frac{1}{{x}}}}{{\frac{5}{{x}}+{4}}}
I'll show you how to do this two different ways. It is worth seeing both, because they are both useful. You can decide which is easier ;-)

Solution 1 - Multiplying by the Reciprocal

I take the top expression (numerator) and turn it into a single fraction with denominator x.
\displaystyle{3}+\frac{1}{{x}}=\frac{{{3}{x}+{1}}}{{x}}
We do likewise with the bottom expression (denominator):
\displaystyle\frac{5}{{x}}+{4}=\frac{{{5}+{4}{x}}}{{x}}
So the question has become:
\displaystyle\frac{{{3}+\frac{1}{{x}}}}{{\frac{5}{{x}}+{4}}}=\frac{{\frac{{{3}{x}+{1}}}{{x}}}}{{\frac{{{5}+{4}{x}}}{{x}}}}
We think of the right side as a division of the top by the bottom:
\displaystyle\frac{{{3}{x}+{1}}}{{x}}\div\frac{{{5}+{4}{x}}}{{x}}
To divide by a fraction, you multiply by the reciprocal:
\displaystyle\frac{{{3}{x}+{1}}}{{{x}}}\times\frac{x}{{{5}+{4}{x}}}=\frac{{{3}{x}+{1}}}{{{5}+{4}{x}}}
The x's cancelled out, and we have our final answer, which cannot be simplified any more.

Solution 2 - Multiplying Top and Bottom

I recognise that I have "/x" in both the numerator and denominator. So if I just multiply top and bottom by x, it will simplify everything by removing the fractions on top and bottom.
\displaystyle\frac{{{3}+\frac{1}{{x}}}}{{\frac{5}{{x}}+{4}}}\times\frac{x}{{x}}
I am really just multiplying by "1" and not changing the original value of the fraction - just changing its form.
So I multiply each element of the top by x and each element of the bottom by x and I get:
\displaystyle\frac{{{3}+\frac{1}{{x}}}}{{\frac{5}{{x}}+{4}}}\times\frac{x}{{x}}=\frac{{{3}{x}+{1}}}{{{5}+{4}{x}}}
I cannot simplify any further.

No comments:

Post a Comment