remember the above values:
(a) divide the numbers 0, 1, 2, 3 and 4 by 4,
(b) take the positive square roots,
(c) these numbers given the values of sin 0°, sin 30°, sin 45°, sin 60° and sin 90° respectively.
(d) write the values of sin 0°, sin 30°, sin 45°, sin 60° and sin 90° in reverse order and get the values of cos 0°, cos 30°, cos 45°, cos 60° and cos 90° respectively.
If θ be an acute angle, the values of sin θ and cos θ lies between 0 and 1 (both inclusive).
The sine of the standard angles 0°, 30°, 45°, 60° and 90° are respectively the positive square roots of 0/4,1/4, 2/4,3/4 and 4/4
Therefore,
sin 0° = √(0/4) = 0
sin 30° = √(1/4) = ½
sin 45° = √(2/4) = 1/√2 = √2/2
sin 60° = √3/4 = √3/2;
cos 90° = √(4/4) = 1.
Similarly cosine of the above standard angels are respectively the positive square roots of 4/4, 3/4, 2/4, 1/4, 0/4
Therefore,
cos 0° = √(4/4) = 1
cos 30° = √(3/4) = √3/2
cos 45° = 1
cos 60° = √(1/4) = 1/2
cos 90° = √(0/4) = 0.
Since, we know the sin and cos value of the standard angles from the trigonometrical ratios table; therefore we can easily find the values of the other trigonometrical ratios of the standard angles.
The tangent of the standard angles 0°, 30°, 45°, 60° and 90°:
tan 0° = 0
tan 30° = √3/3
tan 45° = √(2/4) = 1/√2 = √2/2
tan 60° = √3
tan 90° = not defined.
The cosine of the standard angles 0°, 30°, 45°, 60° and 90°:
csc 0° = not defined.
csc 30° = 2
csc 45° = √2
csc 60° = 2√3/3
csc 90° = 1.
The secant of the standard angles 0°, 30°, 45°, 60° and 90°:
sec 0° = 1
sec 30° = 2√3/3
sec 45° = √2
sec 60° = 2
sec 90° = not defined.
The cotangent of the standard angles 0°, 30°, 45°, 60° and 90°:
cot 0° = not defined.
cot 30° = √3
cot 45° = 1
cot 60° = √3/3
cot 90° = 0
No comments:
Post a Comment